Python3 目标检测是一种基于机器学习和深度学习技术的计算机视觉应用。该技术能够快速准确地检测出图像或视频中的目标物体,并给出其精确位置。
import cv2 import numpy as np import tensorflow as tf from tensorflow.keras import Model from tensorflow.keras.applications import EfficientNetB4 from tensorflow.keras.layers import Dense, GlobalAveragePooling2D class ObjectDetector(Model): def __init__(self, num_classes): super(ObjectDetector, self).__init__() self.base_model = EfficientNetB4(include_top=False, input_shape=(224, 224, 3)) self.avg_pool = GlobalAveragePooling2D() self.output_layer = Dense(num_classes, activation='softmax') def call(self, inputs): x = self.base_model(inputs) x = self.avg_pool(x) x = self.output_layer(x) return x def detect_object(image_path, threshold): # 加载模型 detector = ObjectDetector(num_classes=10) detector.load_weights('object_detector.h5') # 加载图片 image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = cv2.resize(image, (224, 224)) image = np.expand_dims(image, axis=0) # 推理 predictions = detector.predict(image) class_index = np.argmax(predictions[0]) confidence = predictions[0][class_index] # 判断是否超过阈值 if confidence >= threshold: return class_index else: return -1 # 测试 class_names = ['cat', 'dog', 'car', 'bus', 'person', 'tree', 'apple', 'banana', 'book', 'chair'] image_path = 'test.jpg' threshold = 0.6 class_index = detect_object(image_path, threshold) if class_index == -1: print('未检测到目标物体') else: print('检测到目标物体:', class_names[class_index])
以上是一个基于 EfficientNetB4 构建的目标检测模型。模型训练好后,只需要调用 detect_object 函数即可实现目标检测。该函数会返回目标物体的分类编号,如果未检测到目标物体则返回 -1。
目标检测技术在实际应用中有着广泛的应用,可以用于自动驾驶、安防、人脸识别、产品质检等场景。Python3 作为一种优秀的编程语言,提供了丰富的机器学习和深度学习库,为目标检测技术的研究和实现提供了便利。
上一篇 python3 追加写
下一篇 python3 通配符